options

Stylizer

spmxv-gcc-ofast.exespmxv-gcc-o3.exespmxv-acfl-ofast.exespmxv-acfl-o3.exe

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

Not available for this run

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Not available for this run

Not available for this run

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -march=native is used

[ 3.00 / 3 ] Architecture specific option -march=native is used

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 4 / 4 ] Application profile is long enough (60.69 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (63.73 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (58.70 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (59.43 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.04 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.04 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.05 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.05 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer

spmxv-gcc-ofast.exespmxv-gcc-o3.exespmxv-acfl-ofast.exespmxv-acfl-o3.exe

[ 3 / 4 ] CPU activity is below 90% (77.14%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (80.12%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] CPU activity is good

CPU cores are active 91.41% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 91.48% of time

[ 4 / 4 ] Affinity is good (96.33%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (96.35%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (99.97%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (99.97%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (4.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (3.83%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (5.25%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (5.13%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (6.40%) lower than cumulative innermost loop coverage (70.59%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.99%) lower than cumulative innermost loop coverage (72.91%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.14%) lower than cumulative innermost loop coverage (77.41%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (6.26%) lower than cumulative innermost loop coverage (79.42%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 4 ] A significant amount of threads are idle (22.88%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (19.90%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Threads activity is good

On average, more than 91.38% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 91.46% of observed threads are actually active

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (70.59%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (72.91%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (77.41%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (79.42%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (70.57%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (72.85%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (70.04%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (79.42%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (76.99%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (78.90%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (85.55%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (85.67%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

Optimizer

Analysisr0r1r2r3
Loop Computation IssuesLess than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA1110
Presence of a large number of scalar integer instructions1110
Control Flow IssuesPresence of 2 to 4 paths0011
Non-innermost loop1111
Data Access IssuesPresence of constant non-unit stride data access1101
Presence of indirect access1122
Vectorization RoadblocksPresence of 2 to 4 paths0011
Presence of more than 4 paths1100
Non-innermost loop1111
Presence of constant non-unit stride data access1101
Presence of indirect access1122
×