options

Stylizer

qmckl_cqmckl_fortranqmckl_doc

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 4 / 4 ] Application profile is long enough (13.22 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (11.49 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (14.67 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 9.65 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.04 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.10 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer

qmckl_cqmckl_fortranqmckl_doc

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.52% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.59% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.62% of time

[ 2 / 4 ] Affinity stability is lower than 90% (64.74%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 4 ] Affinity stability is lower than 90% (77.32%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 2 / 4 ] Affinity stability is lower than 90% (50.31%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (9.23%) lower than cumulative innermost loop coverage (79.87%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (10.36%) lower than cumulative innermost loop coverage (88.46%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (7.84%) lower than cumulative innermost loop coverage (90.66%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 4 / 4 ] Threads activity is good

On average, more than 99.52% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 99.59% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 99.62% of observed threads are actually active

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (79.87%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (88.46%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (90.66%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (45.93%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (50.20%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (88.61%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (89.10%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.82%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.50%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

Optimizer

Analysisr0r1r2
Loop Computation IssuesPresence of expensive FP instructions002
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA112
Presence of a large number of scalar integer instructions321
Low iteration count110
Control Flow IssuesPresence of more than 4 paths332
Non-innermost loop222
Low iteration count110
Data Access IssuesPresence of indirect access340
Presence of expensive instructions: scatter/gather330
Presence of special instructions executing on a single port111
More than 20% of the loads are accessing the stack323
Vectorization RoadblocksPresence of more than 4 paths432
Non-innermost loop222
Presence of indirect access340
Out of user code001
Inefficient VectorizationPresence of expensive instructions: scatter/gather330
Presence of special instructions executing on a single port111
×