options

kmeans-icpx-Ofast - 2025-08-12 16:18:33 - MAQAO 2025.1.2

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 99.17% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.17% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (93.25%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.21%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.08%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.79%) lower than cumulative innermost loop coverage (96.21%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 93 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.97%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 134.18% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (85.72%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (93.38%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.33%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.06%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.03%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.64%) lower than cumulative innermost loop coverage (96.33%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 93 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.96%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 172.48% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (79.00%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (93.34%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.32%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.08%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.64%) lower than cumulative innermost loop coverage (96.32%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 93 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.92%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 206.21% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (75.69%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (93.32%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.28%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.11%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.64%) lower than cumulative innermost loop coverage (96.28%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 93 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.85%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 231.11% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (74.11%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (92.76%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.19%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.19%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.01%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.66%) lower than cumulative innermost loop coverage (96.19%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 92 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.57%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 252.60% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (74.30%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (89.01%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (94.91%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (73.09%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.02%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.67%) lower than cumulative innermost loop coverage (94.91%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - kmeans-icpx-Ofast+Execution Time: 89 % - Vectorization Ratio: 19.15 % - Vector Length Use: 16.49 %
Data Access Issues+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Inefficient Vectorization+6
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 6 issues (= instructions) costing 1 point each.6
Loop 26 - kmeans-icpx-Ofast+Execution Time: 3 % - Vectorization Ratio: 13.92 % - Vector Length Use: 12.75 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+6
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+9
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each.4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 27 - kmeans-icpx-OfastExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 %
Loop 23 - kmeans-icpx-Ofast+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 37.50 %
Data Access Issues+14
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
[SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 2 issues (= instructions) costing 4 points each.8
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each.2
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Inefficient Vectorization+10
[SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 2 issues (= instructions) costing 4 points each.8
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each.2
×