options

kripke.exe - 2026-01-09 16:02:15 - MAQAO 2025.1.4

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.54%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 99.74% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.76% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (62.05%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (36.26%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.77%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (62.28%) greater than cumulative innermost loop coverage (36.26%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 650 - kripke.exe+Execution Time: 62 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 651 - kripke.exe+Execution Time: 28 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 543 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 833 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 1103 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 50.00 % - Vector Length Use: 15.63 %
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.43%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 199.11% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.82% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (62.01%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (36.21%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.82%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.41%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (62.22%) greater than cumulative innermost loop coverage (36.21%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 650 - kripke.exe+Execution Time: 62 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 651 - kripke.exe+Execution Time: 28 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 543 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 833 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 521 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (97.04%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 396.38% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.82% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (60.86%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (35.96%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.80%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.67%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (61.07%) greater than cumulative innermost loop coverage (35.96%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 650 - kripke.exe+Execution Time: 60 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 651 - kripke.exe+Execution Time: 27 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 543 - kripke.exeExecution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 833 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 521 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.24%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 785.90% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.79% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (58.98%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (35.03%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.77%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (4.89%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (59.20%) greater than cumulative innermost loop coverage (35.03%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 650 - kripke.exe+Execution Time: 58 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 651 - kripke.exe+Execution Time: 26 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 833 - kripke.exeExecution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 543 - kripke.exeExecution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 521 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.95%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1406.87% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (89.36%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (41.33%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (40.46%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.87%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (6.10%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (41.49%) greater than cumulative innermost loop coverage (40.46%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 650 - kripke.exe+Execution Time: 41 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 651 - kripke.exe+Execution Time: 34 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 543 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 833 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 521 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4

Optimizer

Loop IDAnalysisPenalty Score
Loop 651 - kripke.exe+Execution Time: 45 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 650 - kripke.exe+Execution Time: 41 % - Vectorization Ratio: 16.25 % - Vector Length Use: 14.14 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 833 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 543 - kripke.exeExecution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 1115 - kripke.exe+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Data Access Issues+42
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each.32
Loop 932 - kripke.exeExecution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop 649 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.94 %
Control Flow Issues+4
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 507 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 521 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 514 - kripke.exe+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.38 %
Data Access Issues+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
×