Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (167.03 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.79 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 2.79 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 2.79 / 3 ] Architecture specific option -axCORE is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (45.75%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 98.29% of time
[ 4 / 4 ] Threads activity is good
On average, more than 98.05% of observed threads are actually active
[ 4 / 4 ] Affinity is good (99.25%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (24.60%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (45.64%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.11%) lower than cumulative innermost loop coverage (45.64%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 936 - exec | Execution Time: 24 % - Vectorization Ratio: 100.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 0 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
►Loop 945 - exec | Execution Time: 9 % - Vectorization Ratio: 100.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 2 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Loop 2373 - exec | Execution Time: 4 % - Vectorization Ratio: 8.33 % - Vector Length Use: 13.54 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2155 - exec | Execution Time: 1 % - Vectorization Ratio: 54.55 % - Vector Length Use: 15.91 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 8 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each. | 8 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each. | 8 |
►Loop 1504 - exec | Execution Time: 1 % - Vectorization Ratio: 94.06 % - Vector Length Use: 23.89 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 48 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 7 issues ( = indirect data accesses) costing 4 point each. | 28 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 18 issues (= instructions) costing 1 point each. | 18 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 29 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 7 issues ( = indirect data accesses) costing 4 point each. | 28 |
►Inefficient Vectorization | 18 | |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 18 issues (= instructions) costing 1 point each. | 18 |
►Loop 461 - exec | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1000 | |
○ | [SA] Too many paths (6561 paths) - Simplify control structure. There are 6561 issues ( = paths) costing 1 point, limited to 1000. | 1000 |
►Vectorization Roadblocks | 1000 | |
○ | [SA] Too many paths (6561 paths) - Simplify control structure. There are 6561 issues ( = paths) costing 1 point, limited to 1000. | 1000 |
►Loop 938 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 6 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 |
►Vectorization Roadblocks | 6 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 |
►Loop 1054 - exec | Execution Time: 0 % - Vectorization Ratio: 65.63 % - Vector Length Use: 20.70 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 7 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 7 issues (= instructions) costing 1 point each. | 7 |
►Inefficient Vectorization | 7 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 7 issues (= instructions) costing 1 point each. | 7 |
►Loop 1043 - exec | Execution Time: 0 % - Vectorization Ratio: 65.63 % - Vector Length Use: 20.70 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 7 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 7 issues (= instructions) costing 1 point each. | 7 |
►Inefficient Vectorization | 7 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 7 issues (= instructions) costing 1 point each. | 7 |
►Loop 1057 - exec | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 0 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each | 0 |