options

exec - 2025-11-26 14:57:23 - MAQAO 2025.1.3

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5
  • run_6
  • run_7
  • run_8
  • run_9
  • run_10

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (374.21 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (3.89%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 99.68% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.68% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 1.13%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (3.86%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (3.18%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (98.80%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.70%) lower than cumulative innermost loop coverage (3.18%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.22%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 314 - libggml-base.so+Execution Time: 1 % - Vectorization Ratio: 34.69 % - Vector Length Use: 26.28 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (189.54 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (3.29%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 195.63% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.07% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 1.00%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (3.28%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (2.54%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.69%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (2.39%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.75%) lower than cumulative innermost loop coverage (2.54%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.22%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 314 - libggml-base.so+Execution Time: 0 % - Vectorization Ratio: 34.69 % - Vector Length Use: 26.28 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (98.26 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (3.20%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 385.95% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 97.22% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.97%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (3.18%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (2.45%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.61%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (6.68%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.75%) lower than cumulative innermost loop coverage (2.45%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.25%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 314 - libggml-base.so+Execution Time: 0 % - Vectorization Ratio: 34.69 % - Vector Length Use: 26.28 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1437 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (58.87 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (2.41%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 753.98% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 95.62% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.81%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (2.39%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (1.75%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.52%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (13.02%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.66%) lower than cumulative innermost loop coverage (1.75%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.23%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 314 - libggml-base.so+Execution Time: 0 % - Vectorization Ratio: 34.69 % - Vector Length Use: 26.28 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 1437 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (40.47 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (1.79%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1467.28% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 93.76% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.58%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (1.77%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (1.39%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.42%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (4.80%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.41%) lower than cumulative innermost loop coverage (1.39%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.15%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 314 - libggml-base.so+Execution Time: 0 % - Vectorization Ratio: 34.69 % - Vector Length Use: 26.28 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (33.80 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (1.64%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 2139.91% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 91.51% of time

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.49%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (1.62%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (1.25%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.37%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (8.79%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.39%) lower than cumulative innermost loop coverage (1.25%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.14%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (30.79 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (1.28%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 2793.66% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (89.86%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.43%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (1.27%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (1.03%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.31%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (8.43%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.25%) lower than cumulative innermost loop coverage (1.03%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.12%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (30.30 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (1.17%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 3436.66% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (88.47%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.37%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (1.16%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (0.93%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.33%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (42.64%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.24%) lower than cumulative innermost loop coverage (0.93%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.10%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (30.07 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (1.11%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 4056.74% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (87.05%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.34%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (1.11%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (0.95%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.31%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (15.08%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.17%) lower than cumulative innermost loop coverage (0.95%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.12%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1437 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (29.60 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (0.95%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 4662.95% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (85.73%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.28%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (0.94%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (0.75%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.30%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (6.56%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.20%) lower than cumulative innermost loop coverage (0.75%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.12%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 2292 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 46.15 % - Vector Length Use: 55.53 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4

Stylizer  

[ 0 / 9 ] Compilation options are not available

Compilation options are an important optimization leverage but ONE-View is not able to analyze them.

[ 4 / 4 ] Application profile is long enough (37.73 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.

Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 0 / 4 ] Too little time of the experiment time spent in analyzed loops (0.67%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 5208.89% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (83.29%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 0 / 4 ] Loop profile is flat

No hotspot found in the application (greatest loop coverage is 0.21%), and the twenty hottest loops cumulated coverage is lower than 20% of the application profiled time (0.67%)

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (0.56%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.45%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (15.30%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.11%) lower than cumulative innermost loop coverage (0.56%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.08%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2293 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 10.53 % - Vector Length Use: 24.67 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 1432 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 13.17 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 1746 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 15.28 % - Vector Length Use: 38.09 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 908 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 68.18 % - Vector Length Use: 79.76 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 433 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 538 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.84 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 1278 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 94.12 % - Vector Length Use: 95.59 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 0 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 86.36 % - Vector Length Use: 95.61 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Vectorization Roadblocks+4
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 1753 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 901 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 96.00 % - Vector Length Use: 97.00 %
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
×