options

exec - 2025-11-25 11:45:51 - MAQAO 2025.1.3

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0

Stylizer  

[ 4 / 4 ] Application profile is long enough (17.26 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2.28 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 24.14% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Application run on the GRANITE_RAPIDS micro-architecture while the code was specialized for graniterapids. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.04 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (42.49%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 2 / 4 ] A significant amount of threads are idle (48.92%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (84.97%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (9.73%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (40.41%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (86.62%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (5.63%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.08%) lower than cumulative innermost loop coverage (40.41%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (1.10%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 742 - libggml-cpu.so+Execution Time: 9 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Control Flow Issues0
Vectorization Roadblocks+1000
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
Loop 741 - libggml-cpu.so+Execution Time: 9 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 739 - libggml-cpu.so+Execution Time: 7 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 740 - libggml-cpu.so+Execution Time: 6 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 %
Control Flow Issues0
Vectorization Roadblocks+1000
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
Loop 1779 - libggml-cpu.so+Execution Time: 1 % - Vectorization Ratio: 13.04 % - Vector Length Use: 10.05 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (10231 paths) - Simplify control structure. There are 10231 issues ( = paths) costing 1 point, limited to 1000.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+7
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each.5
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (10231 paths) - Simplify control structure. There are 10231 issues ( = paths) costing 1 point, limited to 1000.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Inefficient Vectorization+5
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each.5
Loop 2455 - libggml-cpu.so+Execution Time: 1 % - Vectorization Ratio: 60.70 % - Vector Length Use: 29.66 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Control Flow Issues+3
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
Data Access Issues+5
[SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 0 issues ( = arrays) costing 2 points each0
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each.5
Vectorization Roadblocks+3
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
Inefficient Vectorization+5
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each.5
Loop 1790 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 0.00 %
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Loop 395 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 90.91 % - Vector Length Use: 38.76 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+68
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 48 issues (= instructions) costing 1 point each.48
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
Inefficient Vectorization+48
[SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 48 issues (= instructions) costing 1 point each.48
Loop 1158 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 98.00 % - Vector Length Use: 98.13 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+7
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+8
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Inefficient Vectorization+3
[SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
[SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points.2
Loop 1466 - libggml-cpu.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 7.81 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
×