Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (11.92 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 2 / 3 ] Security settings from the host restrict profiling. Some metrics will be missing or incomplete.
Current value for kernel.perf_event_paranoid is 2. If possible, set it to 1 or check with your system administrator which flag can be used to achieve this.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (70.87%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 92.11% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.68% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (68.63%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (69.83%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.41%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (18.96%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.04%) lower than cumulative innermost loop coverage (69.83%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 310 - libggml-cpu.so | Execution Time: 68 % - Vectorization Ratio: 66.67 % - Vector Length Use: 59.52 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 70 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 51.92 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1694 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 9.52 % - Vector Length Use: 38.81 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 872 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (865 paths) - Simplify control structure. There are 865 issues ( = paths) costing 1 point each with a malus of 4 points. | 869 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 872 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (865 paths) - Simplify control structure. There are 865 issues ( = paths) costing 1 point each with a malus of 4 points. | 869 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 71 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 40.38 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 52 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 52.21 % | |
►Control Flow Issues | 12 | |
○ | [SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points. | 10 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points. | 10 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
○Loop 1706 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 81.82 % | |
►Loop 301 - libggml-base.so | Execution Time: 0 % - Vectorization Ratio: 14.02 % - Vector Length Use: 35.29 % | |
►Loop Computation Issues | 18 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each. | 12 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○Control Flow Issues | 0 | |
►Vectorization Roadblocks | 1000 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 49 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 47.22 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○Loop 760 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
►Loop 1395 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 14.29 % - Vector Length Use: 32.14 % | |
►Loop Computation Issues | 8 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 2 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |