Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (16.06 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.34%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.95% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.36% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.48%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.54%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.31%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (13.51%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.80%) lower than cumulative innermost loop coverage (81.54%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 80 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
[ 4 / 4 ] Application profile is long enough (16.16 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.51%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 92.00% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.42% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.76%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.76%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.33%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (15.26%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.75%) lower than cumulative innermost loop coverage (81.76%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 80 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
[ 4 / 4 ] Application profile is long enough (16.09 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.28%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.73% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.12% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.39%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.47%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.34%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (12.68%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.80%) lower than cumulative innermost loop coverage (80.47%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
[ 4 / 4 ] Application profile is long enough (16.12 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.06%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.93% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.34% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.15%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.28%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.25%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (14.99%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.78%) lower than cumulative innermost loop coverage (81.28%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 80 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.14 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.05%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.56% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 95.99% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.20%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.28%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.31%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (13.55%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.77%) lower than cumulative innermost loop coverage (80.28%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.17 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (80.86%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.67% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.05% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.01%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.08%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.34%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (14.12%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.79%) lower than cumulative innermost loop coverage (80.08%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.08 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.53%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.78% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.18% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.64%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.73%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.33%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (14.47%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.80%) lower than cumulative innermost loop coverage (80.73%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
[ 4 / 4 ] Application profile is long enough (16.18 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.13%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.73% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.14% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.17%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.29%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.24%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (13.68%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.84%) lower than cumulative innermost loop coverage (81.29%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 80 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.20 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.91%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.79% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.26% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.81%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.00%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.31%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (12.03%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.91%) lower than cumulative innermost loop coverage (81.00%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.08 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.69%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.94% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.33% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.80%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (81.89%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.24%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (13.10%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.80%) lower than cumulative innermost loop coverage (81.89%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 80 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
[ 4 / 4 ] Application profile is long enough (16.06 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (81.57%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 91.77% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 96.17% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (79.66%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.74%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.33%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (15.41%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.83%) lower than cumulative innermost loop coverage (80.74%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2365 - libggml-cpu.so | Execution Time: 79 % - Vectorization Ratio: 50.00 % - Vector Length Use: 34.82 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Loop 58 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.51 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 75 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.54 % | |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 74 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1001 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
►Loop 1840 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 5.65 % - Vector Length Use: 21.88 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1003 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 2366 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 81.25 % - Vector Length Use: 42.19 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
►Vectorization Roadblocks | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each. | 14 |
○Loop 1852 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 80.00 % | |
○Loop 857 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 75.00 % | |
►Loop 54 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 27.27 % | |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Vectorization Roadblocks | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Loop 2350 - libggml-cpu.so | Execution Time: 0 % - Vectorization Ratio: 70.21 % - Vector Length Use: 39.74 % | |
►Loop Computation Issues | 10 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |