options

engine_linuxa64_gf_ompi - 2024-10-17 10:08:29 - MAQAO 2.20.9

Help is available by moving the cursor above any symbol or by checking MAQAO website.

Stylizer  

[ 4 / 4 ] Application profile is long enough (1421.90 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 3.00 / 3 ] Optimization level option is correctly used

[ 2.98 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 2.98 / 3 ] Architecture specific option -mcpu is used

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 2.12 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Optimizer

Loop IDAnalysisPenalty Score
Loop 6195 - engine_linuxa64_gf_ompi+Execution Time: 9 % - Vectorization Ratio: 71.43 % - Vector Length Use: 42.86 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 10581 - engine_linuxa64_gf_ompi+Execution Time: 7 % - Vectorization Ratio: 46.15 % - Vector Length Use: 40.38 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+68
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 32 issues ( = data accesses) costing 2 point each.64
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+68
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 32 issues ( = data accesses) costing 2 point each.64
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 10282 - engine_linuxa64_gf_ompi+Execution Time: 3 % - Vectorization Ratio: 1.37 % - Vector Length Use: 25.34 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+82
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 41 issues ( = data accesses) costing 2 point each.82
Vectorization Roadblocks+82
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 41 issues ( = data accesses) costing 2 point each.82
Loop 6410 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 63.16 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+10
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Vectorization Roadblocks+10
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Loop 29120 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 11.11 % - Vector Length Use: 27.08 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 10533 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 37963 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 7.86 % - Vector Length Use: 26.23 %
Loop Computation Issues+116
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Large loop body: over microp cache size - Perform loop splitting or reduce unrolling. There are 44 issues (= chunks of 50 instructions) costing 2 point each.88
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
[SA] Bottleneck in the front end - If loop size is very small (rare occurrences), perform unroll and jam. If loop size is large, perform loop splitting. This issue costs 2 points.2
Control Flow Issues+4
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each.2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1004
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each.2
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 10312 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+24
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 12 issues ( = data accesses) costing 2 point each.24
Vectorization Roadblocks+26
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 12 issues ( = data accesses) costing 2 point each.24
Loop 10472 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+52
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 12 issues (= instructions) costing 4 points each.48
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
Vectorization Roadblocks+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
Loop 10349 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+86
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 43 issues ( = data accesses) costing 2 point each.86
Vectorization Roadblocks+86
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 43 issues ( = data accesses) costing 2 point each.86
Loop 6475 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 64.29 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 10457 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+34
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 17 issues ( = data accesses) costing 2 point each.34
Vectorization Roadblocks+34
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 17 issues ( = data accesses) costing 2 point each.34
Loop 10304 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+82
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 41 issues ( = data accesses) costing 2 point each.82
Vectorization Roadblocks+82
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 41 issues ( = data accesses) costing 2 point each.82
Loop 29119 - engine_linuxa64_gf_ompi+Execution Time: 1 % - Vectorization Ratio: 11.11 % - Vector Length Use: 25.14 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+10
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 29118 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 11.11 % - Vector Length Use: 27.08 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+10
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Vectorization Roadblocks+12
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Loop 10347 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+72
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 36 issues ( = data accesses) costing 2 point each.72
Vectorization Roadblocks+72
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 36 issues ( = data accesses) costing 2 point each.72
Loop 38138 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+22
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Vectorization Roadblocks+22
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Loop 31053 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+20
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+10
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Vectorization Roadblocks+10
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each.10
Loop 38106 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 50.00 % - Vector Length Use: 37.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Vectorization Roadblocks+32
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 16 issues ( = data accesses) costing 2 point each.32
Loop 6477 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 64.29 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 30872 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+18
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each.12
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
Data Access Issues+22
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Vectorization Roadblocks+25
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Loop 30875 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1001
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
Loop 7665 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 27.38 % - Vector Length Use: 31.32 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
Data Access Issues+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each.14
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+21
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 7 issues ( = data accesses) costing 2 point each.14
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Loop 10283 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
Loop 30878 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+22
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Vectorization Roadblocks+22
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 11 issues ( = data accesses) costing 2 point each.22
Loop 5672 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 60.00 % - Vector Length Use: 40.00 %
Loop Computation Issues+10
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1002
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 5677 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 %
Loop Computation Issues+10
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+8
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Loop 31047 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.22 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Vectorization Roadblocks+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Loop 30849 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 8.20 % - Vector Length Use: 23.70 %
Loop Computation Issues+18
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each.12
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+1003
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 10302 - engine_linuxa64_gf_ompi+Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+20
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 20 issues ( = data accesses) costing 2 point each.40
Vectorization Roadblocks+40
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 20 issues ( = data accesses) costing 2 point each.40
×